Synthesis of recrystallized anatase TiO2 mesocrystals with Wulff shape assisted by oriented attachment.

نویسندگان

  • Rafael O Da Silva
  • Ricardo H Gonçalves
  • Daniel G Stroppa
  • Antonio J Ramirez
  • Edson R Leite
چکیده

In this work, we describe a kinetically controlled crystallization process assisted by an oriented attachment (OA) mechanism based on a nonaqueous sol-gel synthetic method (specifically, the reaction of titanium(IV) chloride (TiCl(4)) with n-octanol) to prepare re-crystallized anatase TiO(2) mesocrystals (single crystal). The kinetics study revealed a multi-step and hierarchical process controlled by OA, and a high resolution transmission electron microscopy (HRTEM) analysis clearly shows that the synthesized mesocrystal presents a truncated bipyramidal Wulff shape, indicating that its surface is dominated by {101} facets. This shape is developed during the recrystallization step. The material developed here displayed superior photocatalytic activity under visible light irradiation compared to TiO(2)-P25 as a benchmarking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior.

Unique spindle-shaped nanoporous anatase TiO(2) mesocrystals with a single-crystal-like structure and tunable sizes were successfully fabricated on a large scale through mesoscale assembly in the tetrabutyl titanate-acetic acid system without any additives under solvothermal conditions. A complex mesoscale assembly process involving slow release of soluble species from metastable solid precurso...

متن کامل

Rutile TiO2 Mesocrystals/Reduced Graphene Oxide with High-Rate and Long-Term Performance for Lithium-Ion Batteries

An in situ hydrothermal route is developed for fabricating rutile TiO2 mesocrystals/reduced graphene oxide nanosheets (TGR) hybrids in the presence of dodecylbenzenesulphonic acid (ADBS). These rutile TiO2 mesocrystals with a Wulff shape are composed of ultra-tiny rod-like subunits with the same oriented direction and closely wrapped by the nanosheets of reduced graphene oxide (RGO). It is foun...

متن کامل

Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals

Oriented self-assembly between inorganic nanocrystals and surfactants is emerging as a route for obtaining new mesocrystalline semiconductors. However, the actual synthesis of mesoporous semiconductor mesocrystals with abundant surface sites is extremely difficult, and the corresponding new physical and chemical properties arising from such an intrinsic porous mesocrystalline nature, which is o...

متن کامل

Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties†

Unique nanorod-like mesocrystals constructed from ultrathin rutile TiO2 nanowires were successfully fabricated for the first time using a low-temperature additive-free synthetic route, and the mesocrystal formation requirements and mechanism in the absence of polymer additives were discussed. The ultrathin nanowires were highly crystalline and their diameters were found to be ca. 3–5 nm. The ru...

متن کامل

Synthesis and Characterization of Anatase-coated Multiwall Carbon Nanotube for Improvement of Photocatalytic Activity

Sol-gel technique was used to coat multiwall carbon nanotubes (MWCNTs) with anatase titania to increasing the surface area and improve the photocatalytic activity of TiO2. Room temperature ballistic conduct of MWCNT combined with semiconducting behavior of anatase brought about a photocatalytic improvement of ~37 % with respect to the highest methyl orange decolorization flair. For characteriza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2011